3.635 \(\int \frac {(a+b x^2)^2 (c+d x^2)^{5/2}}{x^7} \, dx\)

Optimal. Leaf size=222 \[ -\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {\left (c+d x^2\right )^{5/2} \left (a d (a d+12 b c)+8 b^2 c^2\right )}{16 c^2 x^2}+\frac {5 d \left (c+d x^2\right )^{3/2} \left (a d (a d+12 b c)+8 b^2 c^2\right )}{48 c^2}+\frac {5 d \sqrt {c+d x^2} \left (a d (a d+12 b c)+8 b^2 c^2\right )}{16 c}-\frac {5 d \left (a d (a d+12 b c)+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{16 \sqrt {c}}-\frac {a \left (c+d x^2\right )^{7/2} (a d+12 b c)}{24 c^2 x^4} \]

[Out]

5/48*d*(8*b^2*c^2+a*d*(a*d+12*b*c))*(d*x^2+c)^(3/2)/c^2-1/16*(8*b^2*c^2+a*d*(a*d+12*b*c))*(d*x^2+c)^(5/2)/c^2/
x^2-1/6*a^2*(d*x^2+c)^(7/2)/c/x^6-1/24*a*(a*d+12*b*c)*(d*x^2+c)^(7/2)/c^2/x^4-5/16*d*(8*b^2*c^2+a*d*(a*d+12*b*
c))*arctanh((d*x^2+c)^(1/2)/c^(1/2))/c^(1/2)+5/16*d*(8*b^2*c^2+a*d*(a*d+12*b*c))*(d*x^2+c)^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 219, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {446, 89, 78, 47, 50, 63, 208} \[ -\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {\left (c+d x^2\right )^{5/2} \left (\frac {a d (a d+12 b c)}{c^2}+8 b^2\right )}{16 x^2}+\frac {5 d \left (c+d x^2\right )^{3/2} \left (a d (a d+12 b c)+8 b^2 c^2\right )}{48 c^2}+\frac {5 d \sqrt {c+d x^2} \left (a d (a d+12 b c)+8 b^2 c^2\right )}{16 c}-\frac {5 d \left (a d (a d+12 b c)+8 b^2 c^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{16 \sqrt {c}}-\frac {a \left (c+d x^2\right )^{7/2} (a d+12 b c)}{24 c^2 x^4} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^2*(c + d*x^2)^(5/2))/x^7,x]

[Out]

(5*d*(8*b^2*c^2 + a*d*(12*b*c + a*d))*Sqrt[c + d*x^2])/(16*c) + (5*d*(8*b^2*c^2 + a*d*(12*b*c + a*d))*(c + d*x
^2)^(3/2))/(48*c^2) - ((8*b^2 + (a*d*(12*b*c + a*d))/c^2)*(c + d*x^2)^(5/2))/(16*x^2) - (a^2*(c + d*x^2)^(7/2)
)/(6*c*x^6) - (a*(12*b*c + a*d)*(c + d*x^2)^(7/2))/(24*c^2*x^4) - (5*d*(8*b^2*c^2 + a*d*(12*b*c + a*d))*ArcTan
h[Sqrt[c + d*x^2]/Sqrt[c]])/(16*Sqrt[c])

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 89

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c - a*
d)^2*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d^2*(d*e - c*f)*(n + 1)), x] - Dist[1/(d^2*(d*e - c*f)*(n + 1)), In
t[(c + d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*
(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ
[n, -1] || (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^2 \left (c+d x^2\right )^{5/2}}{x^7} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^2 (c+d x)^{5/2}}{x^4} \, dx,x,x^2\right )\\ &=-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}+\frac {\operatorname {Subst}\left (\int \frac {\left (\frac {1}{2} a (12 b c+a d)+3 b^2 c x\right ) (c+d x)^{5/2}}{x^3} \, dx,x,x^2\right )}{6 c}\\ &=-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}+\frac {1}{16} \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \operatorname {Subst}\left (\int \frac {(c+d x)^{5/2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{5/2}}{16 x^2}-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}+\frac {1}{32} \left (5 d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {(c+d x)^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac {5}{48} d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{3/2}-\frac {\left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{5/2}}{16 x^2}-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}+\frac {1}{32} \left (5 c d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right )\right ) \operatorname {Subst}\left (\int \frac {\sqrt {c+d x}}{x} \, dx,x,x^2\right )\\ &=\frac {5}{16} c d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \sqrt {c+d x^2}+\frac {5}{48} d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{3/2}-\frac {\left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{5/2}}{16 x^2}-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}+\frac {1}{32} \left (5 d \left (8 b^2 c^2+12 a b c d+a^2 d^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\frac {5}{16} c d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \sqrt {c+d x^2}+\frac {5}{48} d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{3/2}-\frac {\left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{5/2}}{16 x^2}-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}+\frac {1}{16} \left (5 \left (8 b^2 c^2+12 a b c d+a^2 d^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )\\ &=\frac {5}{16} c d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \sqrt {c+d x^2}+\frac {5}{48} d \left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{3/2}-\frac {\left (8 b^2+\frac {a d (12 b c+a d)}{c^2}\right ) \left (c+d x^2\right )^{5/2}}{16 x^2}-\frac {a^2 \left (c+d x^2\right )^{7/2}}{6 c x^6}-\frac {a (12 b c+a d) \left (c+d x^2\right )^{7/2}}{24 c^2 x^4}-\frac {5 d \left (8 b^2 c^2+12 a b c d+a^2 d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{16 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.06, size = 92, normalized size = 0.41 \[ \frac {\left (c+d x^2\right )^{7/2} \left (3 d x^6 \left (a^2 d^2+12 a b c d+8 b^2 c^2\right ) \, _2F_1\left (2,\frac {7}{2};\frac {9}{2};\frac {d x^2}{c}+1\right )-7 a c^2 \left (4 a c+a d x^2+12 b c x^2\right )\right )}{168 c^4 x^6} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^2*(c + d*x^2)^(5/2))/x^7,x]

[Out]

((c + d*x^2)^(7/2)*(-7*a*c^2*(4*a*c + 12*b*c*x^2 + a*d*x^2) + 3*d*(8*b^2*c^2 + 12*a*b*c*d + a^2*d^2)*x^6*Hyper
geometric2F1[2, 7/2, 9/2, 1 + (d*x^2)/c]))/(168*c^4*x^6)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 347, normalized size = 1.56 \[ \left [\frac {15 \, {\left (8 \, b^{2} c^{2} d + 12 \, a b c d^{2} + a^{2} d^{3}\right )} \sqrt {c} x^{6} \log \left (-\frac {d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right ) + 2 \, {\left (16 \, b^{2} c d^{2} x^{8} + 16 \, {\left (7 \, b^{2} c^{2} d + 6 \, a b c d^{2}\right )} x^{6} - 8 \, a^{2} c^{3} - 3 \, {\left (8 \, b^{2} c^{3} + 36 \, a b c^{2} d + 11 \, a^{2} c d^{2}\right )} x^{4} - 2 \, {\left (12 \, a b c^{3} + 13 \, a^{2} c^{2} d\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{96 \, c x^{6}}, \frac {15 \, {\left (8 \, b^{2} c^{2} d + 12 \, a b c d^{2} + a^{2} d^{3}\right )} \sqrt {-c} x^{6} \arctan \left (\frac {\sqrt {-c}}{\sqrt {d x^{2} + c}}\right ) + {\left (16 \, b^{2} c d^{2} x^{8} + 16 \, {\left (7 \, b^{2} c^{2} d + 6 \, a b c d^{2}\right )} x^{6} - 8 \, a^{2} c^{3} - 3 \, {\left (8 \, b^{2} c^{3} + 36 \, a b c^{2} d + 11 \, a^{2} c d^{2}\right )} x^{4} - 2 \, {\left (12 \, a b c^{3} + 13 \, a^{2} c^{2} d\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{48 \, c x^{6}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(5/2)/x^7,x, algorithm="fricas")

[Out]

[1/96*(15*(8*b^2*c^2*d + 12*a*b*c*d^2 + a^2*d^3)*sqrt(c)*x^6*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^
2) + 2*(16*b^2*c*d^2*x^8 + 16*(7*b^2*c^2*d + 6*a*b*c*d^2)*x^6 - 8*a^2*c^3 - 3*(8*b^2*c^3 + 36*a*b*c^2*d + 11*a
^2*c*d^2)*x^4 - 2*(12*a*b*c^3 + 13*a^2*c^2*d)*x^2)*sqrt(d*x^2 + c))/(c*x^6), 1/48*(15*(8*b^2*c^2*d + 12*a*b*c*
d^2 + a^2*d^3)*sqrt(-c)*x^6*arctan(sqrt(-c)/sqrt(d*x^2 + c)) + (16*b^2*c*d^2*x^8 + 16*(7*b^2*c^2*d + 6*a*b*c*d
^2)*x^6 - 8*a^2*c^3 - 3*(8*b^2*c^3 + 36*a*b*c^2*d + 11*a^2*c*d^2)*x^4 - 2*(12*a*b*c^3 + 13*a^2*c^2*d)*x^2)*sqr
t(d*x^2 + c))/(c*x^6)]

________________________________________________________________________________________

giac [A]  time = 0.47, size = 286, normalized size = 1.29 \[ \frac {16 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} b^{2} d^{2} + 96 \, \sqrt {d x^{2} + c} b^{2} c d^{2} + 96 \, \sqrt {d x^{2} + c} a b d^{3} + \frac {15 \, {\left (8 \, b^{2} c^{2} d^{2} + 12 \, a b c d^{3} + a^{2} d^{4}\right )} \arctan \left (\frac {\sqrt {d x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {24 \, {\left (d x^{2} + c\right )}^{\frac {5}{2}} b^{2} c^{2} d^{2} - 48 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} b^{2} c^{3} d^{2} + 24 \, \sqrt {d x^{2} + c} b^{2} c^{4} d^{2} + 108 \, {\left (d x^{2} + c\right )}^{\frac {5}{2}} a b c d^{3} - 192 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} a b c^{2} d^{3} + 84 \, \sqrt {d x^{2} + c} a b c^{3} d^{3} + 33 \, {\left (d x^{2} + c\right )}^{\frac {5}{2}} a^{2} d^{4} - 40 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} a^{2} c d^{4} + 15 \, \sqrt {d x^{2} + c} a^{2} c^{2} d^{4}}{d^{3} x^{6}}}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(5/2)/x^7,x, algorithm="giac")

[Out]

1/48*(16*(d*x^2 + c)^(3/2)*b^2*d^2 + 96*sqrt(d*x^2 + c)*b^2*c*d^2 + 96*sqrt(d*x^2 + c)*a*b*d^3 + 15*(8*b^2*c^2
*d^2 + 12*a*b*c*d^3 + a^2*d^4)*arctan(sqrt(d*x^2 + c)/sqrt(-c))/sqrt(-c) - (24*(d*x^2 + c)^(5/2)*b^2*c^2*d^2 -
 48*(d*x^2 + c)^(3/2)*b^2*c^3*d^2 + 24*sqrt(d*x^2 + c)*b^2*c^4*d^2 + 108*(d*x^2 + c)^(5/2)*a*b*c*d^3 - 192*(d*
x^2 + c)^(3/2)*a*b*c^2*d^3 + 84*sqrt(d*x^2 + c)*a*b*c^3*d^3 + 33*(d*x^2 + c)^(5/2)*a^2*d^4 - 40*(d*x^2 + c)^(3
/2)*a^2*c*d^4 + 15*sqrt(d*x^2 + c)*a^2*c^2*d^4)/(d^3*x^6))/d

________________________________________________________________________________________

maple [A]  time = 0.02, size = 387, normalized size = 1.74 \[ -\frac {5 a^{2} d^{3} \ln \left (\frac {2 c +2 \sqrt {d \,x^{2}+c}\, \sqrt {c}}{x}\right )}{16 \sqrt {c}}-\frac {15 a b \sqrt {c}\, d^{2} \ln \left (\frac {2 c +2 \sqrt {d \,x^{2}+c}\, \sqrt {c}}{x}\right )}{4}-\frac {5 b^{2} c^{\frac {3}{2}} d \ln \left (\frac {2 c +2 \sqrt {d \,x^{2}+c}\, \sqrt {c}}{x}\right )}{2}+\frac {5 \sqrt {d \,x^{2}+c}\, a^{2} d^{3}}{16 c}+\frac {15 \sqrt {d \,x^{2}+c}\, a b \,d^{2}}{4}+\frac {5 \sqrt {d \,x^{2}+c}\, b^{2} c d}{2}+\frac {5 \left (d \,x^{2}+c \right )^{\frac {3}{2}} a^{2} d^{3}}{48 c^{2}}+\frac {5 \left (d \,x^{2}+c \right )^{\frac {3}{2}} a b \,d^{2}}{4 c}+\frac {5 \left (d \,x^{2}+c \right )^{\frac {3}{2}} b^{2} d}{6}+\frac {\left (d \,x^{2}+c \right )^{\frac {5}{2}} a^{2} d^{3}}{16 c^{3}}+\frac {3 \left (d \,x^{2}+c \right )^{\frac {5}{2}} a b \,d^{2}}{4 c^{2}}+\frac {\left (d \,x^{2}+c \right )^{\frac {5}{2}} b^{2} d}{2 c}-\frac {\left (d \,x^{2}+c \right )^{\frac {7}{2}} a^{2} d^{2}}{16 c^{3} x^{2}}-\frac {3 \left (d \,x^{2}+c \right )^{\frac {7}{2}} a b d}{4 c^{2} x^{2}}-\frac {\left (d \,x^{2}+c \right )^{\frac {7}{2}} b^{2}}{2 c \,x^{2}}-\frac {\left (d \,x^{2}+c \right )^{\frac {7}{2}} a^{2} d}{24 c^{2} x^{4}}-\frac {\left (d \,x^{2}+c \right )^{\frac {7}{2}} a b}{2 c \,x^{4}}-\frac {\left (d \,x^{2}+c \right )^{\frac {7}{2}} a^{2}}{6 c \,x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2*(d*x^2+c)^(5/2)/x^7,x)

[Out]

-1/6*a^2*(d*x^2+c)^(7/2)/c/x^6-1/24*a^2*d/c^2/x^4*(d*x^2+c)^(7/2)-1/16*a^2*d^2/c^3/x^2*(d*x^2+c)^(7/2)+1/16*a^
2*d^3/c^3*(d*x^2+c)^(5/2)+5/48*a^2*d^3/c^2*(d*x^2+c)^(3/2)-5/16*a^2*d^3/c^(1/2)*ln((2*c+2*(d*x^2+c)^(1/2)*c^(1
/2))/x)+5/16*a^2*d^3/c*(d*x^2+c)^(1/2)-1/2*b^2/c/x^2*(d*x^2+c)^(7/2)+1/2*b^2*d/c*(d*x^2+c)^(5/2)+5/6*b^2*d*(d*
x^2+c)^(3/2)-5/2*b^2*d*c^(3/2)*ln((2*c+2*(d*x^2+c)^(1/2)*c^(1/2))/x)+5/2*b^2*d*c*(d*x^2+c)^(1/2)-1/2*a*b/c/x^4
*(d*x^2+c)^(7/2)-3/4*a*b*d/c^2/x^2*(d*x^2+c)^(7/2)+3/4*a*b*d^2/c^2*(d*x^2+c)^(5/2)+5/4*a*b*d^2/c*(d*x^2+c)^(3/
2)-15/4*a*b*d^2*c^(1/2)*ln((2*c+2*(d*x^2+c)^(1/2)*c^(1/2))/x)+15/4*a*b*d^2*(d*x^2+c)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.96, size = 353, normalized size = 1.59 \[ -\frac {5}{2} \, b^{2} c^{\frac {3}{2}} d \operatorname {arsinh}\left (\frac {c}{\sqrt {c d} {\left | x \right |}}\right ) - \frac {15}{4} \, a b \sqrt {c} d^{2} \operatorname {arsinh}\left (\frac {c}{\sqrt {c d} {\left | x \right |}}\right ) - \frac {5 \, a^{2} d^{3} \operatorname {arsinh}\left (\frac {c}{\sqrt {c d} {\left | x \right |}}\right )}{16 \, \sqrt {c}} + \frac {5}{6} \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} b^{2} d + \frac {{\left (d x^{2} + c\right )}^{\frac {5}{2}} b^{2} d}{2 \, c} + \frac {5}{2} \, \sqrt {d x^{2} + c} b^{2} c d + \frac {15}{4} \, \sqrt {d x^{2} + c} a b d^{2} + \frac {3 \, {\left (d x^{2} + c\right )}^{\frac {5}{2}} a b d^{2}}{4 \, c^{2}} + \frac {5 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} a b d^{2}}{4 \, c} + \frac {{\left (d x^{2} + c\right )}^{\frac {5}{2}} a^{2} d^{3}}{16 \, c^{3}} + \frac {5 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}} a^{2} d^{3}}{48 \, c^{2}} + \frac {5 \, \sqrt {d x^{2} + c} a^{2} d^{3}}{16 \, c} - \frac {{\left (d x^{2} + c\right )}^{\frac {7}{2}} b^{2}}{2 \, c x^{2}} - \frac {3 \, {\left (d x^{2} + c\right )}^{\frac {7}{2}} a b d}{4 \, c^{2} x^{2}} - \frac {{\left (d x^{2} + c\right )}^{\frac {7}{2}} a^{2} d^{2}}{16 \, c^{3} x^{2}} - \frac {{\left (d x^{2} + c\right )}^{\frac {7}{2}} a b}{2 \, c x^{4}} - \frac {{\left (d x^{2} + c\right )}^{\frac {7}{2}} a^{2} d}{24 \, c^{2} x^{4}} - \frac {{\left (d x^{2} + c\right )}^{\frac {7}{2}} a^{2}}{6 \, c x^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(5/2)/x^7,x, algorithm="maxima")

[Out]

-5/2*b^2*c^(3/2)*d*arcsinh(c/(sqrt(c*d)*abs(x))) - 15/4*a*b*sqrt(c)*d^2*arcsinh(c/(sqrt(c*d)*abs(x))) - 5/16*a
^2*d^3*arcsinh(c/(sqrt(c*d)*abs(x)))/sqrt(c) + 5/6*(d*x^2 + c)^(3/2)*b^2*d + 1/2*(d*x^2 + c)^(5/2)*b^2*d/c + 5
/2*sqrt(d*x^2 + c)*b^2*c*d + 15/4*sqrt(d*x^2 + c)*a*b*d^2 + 3/4*(d*x^2 + c)^(5/2)*a*b*d^2/c^2 + 5/4*(d*x^2 + c
)^(3/2)*a*b*d^2/c + 1/16*(d*x^2 + c)^(5/2)*a^2*d^3/c^3 + 5/48*(d*x^2 + c)^(3/2)*a^2*d^3/c^2 + 5/16*sqrt(d*x^2
+ c)*a^2*d^3/c - 1/2*(d*x^2 + c)^(7/2)*b^2/(c*x^2) - 3/4*(d*x^2 + c)^(7/2)*a*b*d/(c^2*x^2) - 1/16*(d*x^2 + c)^
(7/2)*a^2*d^2/(c^3*x^2) - 1/2*(d*x^2 + c)^(7/2)*a*b/(c*x^4) - 1/24*(d*x^2 + c)^(7/2)*a^2*d/(c^2*x^4) - 1/6*(d*
x^2 + c)^(7/2)*a^2/(c*x^6)

________________________________________________________________________________________

mupad [B]  time = 2.72, size = 301, normalized size = 1.36 \[ \frac {\sqrt {d\,x^2+c}\,\left (\frac {5\,a^2\,c^2\,d^3}{16}+\frac {7\,a\,b\,c^3\,d^2}{4}+\frac {b^2\,c^4\,d}{2}\right )-{\left (d\,x^2+c\right )}^{3/2}\,\left (\frac {5\,a^2\,c\,d^3}{6}+4\,a\,b\,c^2\,d^2+b^2\,c^3\,d\right )+{\left (d\,x^2+c\right )}^{5/2}\,\left (\frac {11\,a^2\,d^3}{16}+\frac {9\,a\,b\,c\,d^2}{4}+\frac {b^2\,c^2\,d}{2}\right )}{3\,c\,{\left (d\,x^2+c\right )}^2-3\,c^2\,\left (d\,x^2+c\right )-{\left (d\,x^2+c\right )}^3+c^3}+\left (2\,b\,d\,\left (a\,d-b\,c\right )+4\,b^2\,c\,d\right )\,\sqrt {d\,x^2+c}+\frac {b^2\,d\,{\left (d\,x^2+c\right )}^{3/2}}{3}+\frac {d\,\mathrm {atan}\left (\frac {d\,\sqrt {d\,x^2+c}\,\left (a^2\,d^2+12\,a\,b\,c\,d+8\,b^2\,c^2\right )\,5{}\mathrm {i}}{8\,\sqrt {c}\,\left (\frac {5\,a^2\,d^3}{8}+\frac {15\,a\,b\,c\,d^2}{2}+5\,b^2\,c^2\,d\right )}\right )\,\left (a^2\,d^2+12\,a\,b\,c\,d+8\,b^2\,c^2\right )\,5{}\mathrm {i}}{16\,\sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^2)^2*(c + d*x^2)^(5/2))/x^7,x)

[Out]

((c + d*x^2)^(1/2)*((b^2*c^4*d)/2 + (5*a^2*c^2*d^3)/16 + (7*a*b*c^3*d^2)/4) - (c + d*x^2)^(3/2)*((5*a^2*c*d^3)
/6 + b^2*c^3*d + 4*a*b*c^2*d^2) + (c + d*x^2)^(5/2)*((11*a^2*d^3)/16 + (b^2*c^2*d)/2 + (9*a*b*c*d^2)/4))/(3*c*
(c + d*x^2)^2 - 3*c^2*(c + d*x^2) - (c + d*x^2)^3 + c^3) + (2*b*d*(a*d - b*c) + 4*b^2*c*d)*(c + d*x^2)^(1/2) +
 (b^2*d*(c + d*x^2)^(3/2))/3 + (d*atan((d*(c + d*x^2)^(1/2)*(a^2*d^2 + 8*b^2*c^2 + 12*a*b*c*d)*5i)/(8*c^(1/2)*
((5*a^2*d^3)/8 + 5*b^2*c^2*d + (15*a*b*c*d^2)/2)))*(a^2*d^2 + 8*b^2*c^2 + 12*a*b*c*d)*5i)/(16*c^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2*(d*x**2+c)**(5/2)/x**7,x)

[Out]

Timed out

________________________________________________________________________________________